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Abstract 

Relations between the Einstein theory of gravitation in curved Riemann time-space and 
classical field theories in flat Minkowski time-space are discussed from various points of 
view. 

1. Introduction 

The question has been asked as to how far the non-linear Einstein gravita- 
tion theory in curved Riemann time-space RI-a (with metric g~) might be 
recognised as a somewhat eccentric member of the family of familiar linear 
classical field theories in flat Minkowski time-space (with metric the). 
Some gravitation theorists regard the Einstein theory as essentially different 
from the flat field theories (Treder, 1971). Field theorists more engaged 
in flat theories seem to be predisposed to look for some kind of derivation 
of the Einstein gravitation theory from some flat theory (Fierz, 1939; 
Gupta, 1954, 1957; Thirring, 1959, 1961; Arnowitt, I962; Feynman 
1962-1963; Halpern, 1963a, b; van Niemvenhuizen, 1973). The most cogent 
argument for the latter view might be expected from a fictitious bright 
flat theorist called Mink (perhaps to be found as far away as Feynman's 
Venutian representative (Feynman, 1962-1963)) who, without any advance 
knowledge of Einstein's general relativity theory of gravitation (though 
familiar with Riemann geometry), starts with a special relativistic field 
theory in Ml-a and from there makes a straightforward advance towards 
the Einstein theory in RI-3. But such an approach appears to meet with 
great difficulties. We may easily understand the latter, if instead of ambiti- 
ously and vainly trying to forget the Einstein theory, we avail ourselves of 
the results of Einstein's creative imagination (just by comparing in a ped- 
estrian way various aspects of the question from the flat as well as the curved 
point of view). It does not even demand much creativity to imagine various 
scenarios for inventive attempts by Mink to a genuine flat approach. Let 
us first see how he might start and soon would get into trouble. 
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2. Flat Theory 

2.1. 'Material' Systems 

As long as one deals in flat Minkowski time-space M~_a with such familiar 
classical (and even quantal) 'material' systems as charged point particles 
and the electromagnetic field, one may proceed quite a way before running 
into serious difficulties. In the present paper I want to deal with classical 
theories only. Just for simplicity I shall take classical electrodynamics as an 
illustrative example. The 'material' systems (point charges e, at ¢~(v~) 
and electromagnetic vector field a~(~)) are, together with their interaction 
described by a (non-unique) Poincar6 invariant Lagrangian L,,, for instance 

with 

= z m ,  ", "a + " 

e# ~0 (2.1.1) 

f f a  = a~,a _ aa,~ (2.1.2) 

By variation with regard to the particle and field quantities and to trans- 
lations we obtain the (unique) equations of motion and field equations 

6Lm 3Lm 
6¢~ - 0; 6a-- ~ = 0 (2.1.3) 

as well as the (non-unique, non-symmetric) canonical complete energy- 
momentum tensor T~%,n. The translation invariance of Lm ensures conser- 
vation of energy-momentum, expressed by the (weak) condition 

T~.~. ~ 0. (2.1.4) 

T~ ~a, may be symmetrized under preservation of (2.1.4) into for instance 

c o  

~ o 0  

-- qaof~O f'o~ + ¼qr* ~l,r nBnffa f ~  (2.1.5) 

The trace of this tensor is the scalar 

oo 

(2.1.6) 
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2.2. Free Gravitation Field 
The classical flat field theories which appear the most promising candid- 

ates in Mink's approach to gravitation theory are those of a symmetric 
tensor (spin two) field h=a coupled to the 'material' tensor ~ T~ ~ and a scalar 
(spin zero) fieldfcoupled to the 'material' scalar ~/~a Tg~y¢. With a view to the 
asymptotic behaviour in the Newtonian limit, Mink may choose 'zero 
mass' right from the beginning. Since (2.1.6) would give no coupling to the 
electromagnetic field, he may in a first attempt take for the conjectural 
gravitation field just the pure tensor field h=e. In order to get a simple linear 
second-order field equation, he may for a free Lagrangian (in the absence 
of 'material' systems) in 3//1_3 try a Poincar6 invariant scalar Lo, which 
should be a homogeneous and bilinear form in the first-order derivatives 
h~a,r (as will be indicated by a tilde) and equivalent to (Arnowitt, 1962) 

~ _ K = r  Oa a~ 1 1 r , ~ a ~  L~  - - ~h=a,~h~a,~{~r ~ 71 ~1 - 2 * / ~  

- #r/'~ ~/~' */~" - #t/=" t/a" r/~' +2vq~a t/~ t/~} (2.2.1) 

At some stage he would have to find criteria for choosing the real constants 
or, 2, #, v. The variation principle with regard to h,a with 

- = - ah , + 

= -~ch~e, ~{~rt/~ rff~ t /~  - 2 t / ~  t/~B 1/~ - p~/~= r/x~ r/B~ 

_ #q~.= ~/~ ~/B~ + v~/~. ~/=,, r/~ + w/~ ,/~ q;.~} (2.2.2) 

leads to the field equation 

B ~* = 0 (2.2.3) 

and the canonical energy-momentum tensor 

T;ean = 0~B,~h=p, ar/ --I/ Lg 

~ t~etB, a 76, t . - tut /  I/ I. i /  r /  - -  

If (2.2.3) is satisfied, Tiff,. (2.2.4) satisfies the (weak)conservation condition 

T;, ~ W 0 (2.2.5) 
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This condition remains satisfied, if one adds to (2.2.4) the ('spin type') 
expression 

{eq~)" + flZ ~a" + 7O~a~},~ (2.2.6) 

because the latter satisfies (independent of  the field equation) the (strong) 
conservation condition 

{o~q~ ' ~  + 13Z '~'~ + ~ _ r0 },,~ v 0 (2.2.7) 

The three superpotentials 

q~,B.~ = 2 (rffa rff° - t W  tl Dp) rl ~ ho,,. (2.2.8) 

aB~ g ~0 ~o z = g (~ ~ - n " n  "°)~'~h",,,  (2.2.9) 

(2.2.10) 

will appear to be the flat analogues of Wiarda's three curved superpotentials 
(3.2.9), (3.2.10), (3.2.11) for n = 0. 

The conserved total energy-momentum is given by the space volume 
integral 

P~ = f & r o ~  ° (2.2.11) 

When h,a and h~B,~ tend to zero in the limit of infinite space-like distances, 
the addition of(2.2.6) to (2.2.4) does not affect P~. 

In case Mink might want to symmetrise (2.2.4) in x, 2, perhaps after 
addition of  (2.2.6), the only possibility appears to be 

/t = v = 0 0~ = -f l  (2.2.12) 

Another questionable criterion for choosing a, 2, p, v may be suggested by 
the appearance of the linear gauge transformation 

h , ~ - - . ' - h , B = h , o - A , , ~ - A B , ~  (2.2.13) 

in various treatments. Ar is an arbitrary gauge vector field. Unless A t is 
infinitesimal, it seems problematic whether one might or even should not 
add in the last member of  (2.2.13) a term bilinear in A~,o. Invariance of 
B ~z (2.2.2) under the gauge transformation would require 

2 =/~ = v (2.2.14) 

Invariance of/~o (2.2.1) and ~g~- (2.2.4) cannot be attained at all. That need 
not be too serious, since they are not unique anyhow. 

As a further step Mink might perhaps (for convenience or for deeper 
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field theoretical reasons) try to restrict h~ to the special Hilbert gauge 
(Thirring, 1959) for which 

t/~a h~a = 0 t/~vh~a,~ = 0 t/~ h~a,v~ = 0 (2.2.15) 

by imposing on the finite vector Av the conditions 

r[ 'a Ac,.ts = ½r{ 'a h~t, (2.2.16) 

rl~ Aa ' ~ = ~ v  h~a, ~ _ ½rW h~, a (2.2.17) 

These conditions are only consistent i fh ,a  satisfies the field equation (2.2.3) 
with the choice 

a = ), = # = v (2.2.18) 

If  with this choice he starts in this special gauge for which the subsidiary 
conditions (2.2.15) are satisfied with a new Lagrangian 

~(~- 
Lo = - ~ h~a,, h,a,~ o'{//~//a~//~ _ / / ~  r/a~//~} (2.2.19) 

he gets analogous to (2.2.2) and (2.2.4) 

B "~ = - ~ch~a/,~a{~1~'%laatW - t/~ ~/~ t/¢~} = 0 (2.2.20) 

and a new energy-momentum tensor 

- ~":n,:,,:~,: ~,,t ,t ~:,t 't - (2.2.21) 

The field equation (2.2.3) is then identically fulfilled, but its role is taken over 
by the subsidiary conditions (2.2.15). In this gauge the total energy becomes 

P°= f d, ro -°°T~ ~ o o ~ = a f dao{h~e, hv~, + h~,  h~a,~ ~t ~} tWIt  a~ (2.2.22) 

where latin indices are space-like. If  Mink finally requires that this po 
shall share the property of a total free field energy that it may not be negative 
that fixes the sign of a and (2.2.18) becomes 

tr = 2 =/z = v > 0 (2.2.23) 

This choice determines the sign of B ~ and of the classical free field propa- 
gator in M~_a. If  the theory does lead to a proper gravitation theory indeed, 
this sign will ultimately decide in the Newtonian limit for attraction against 
repulsion of masses (Thirring, 1959). 

The choice (2.2.18) is a sufficient and also necessary condition for the 
validity of 

B~*, a 7 0 (2.2.24) 

independent of the field equation. Still that does not make B ~ a serious 
candidate for an energy-momentum tensor. 
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The symmetry condition (2.2.12) is incompatible with the choice (2.2.18) 
So far none of the arguments for a choice of o-, 2, #, v appears coercive. 
Mink must be clever enough to think of other and better ones. In quantum 
field theory van Nieuwenhuizen has derived the choice (2.2.23) from the 
condition that ghosts and tachyons must be excluded (van Nieuwenhuizen, 
1973). It would be interesting to derive corresponding arguments from classi- 
cal flat free tensor field theory. 

2.3. Coupling o f  Gravitation and Matter 

As long as Mink deals exclusively with the gravitation field, he does not 
run a great risk of meeting with inconsistencies, but the theory remains 
void of physical meaning. He is liable to hit on inconsistencies as soon as he 
tries to couple in M1-3 the symmetric tensor field h~a to the symmetric 
'external' 'material' (that is non-gravitational) energy-momentum tensor 
T,~, ~ of all other present particles and fields. If  the latter are restricted to our 
familiar classical 'material' systems, the complete Lagrangian becomes 

L(~) = Lo(¢ ) + Lm(¢) + L,(~) (2.3.1) 

with the Poincar6 invariant interaction term 

L~ = - ~tch~a T,~asyc (2.3.2) 

The real factor -c to the coupling constant ~ still remains to be chosen. 
The 'material' equations of motion and field equations under the influence 
of  the h~ B field then follow from variation of the part 

Lm + L~ = Lm - "rtc h~B Tr~Bsr~ (2.3.3) 

Variation of the part Lg + L~ of (2.3. I) with regard to h~a leads to the gravi- 
tation field equation 

B ~ = - ~t¢ T~X~rc (2.3.4) 

T~ x appears as the 'external" source, which generates the h,a field as de- 
scribed by the generator B ~z, which is still given by (2.2.2). Because the free 
Lagrangian ~o (2.2.1) has been confined to a homogeneous and bilinear 
form in the first-order derivatives h~B,~, the generator (2.2.2) is homogeneous 
and linear in the second-order derivatives h~.r~. The field equation (2.3.4) 
has then to be supplemented by suitable boundary conditions on the field 
h~a and its first-order derivatives h,a.~. 

The translation invariance of the complete Lagrangian (2.3.1) now en- 
sures conservation of the complete energy-momentum T "a 

T~, ~ w 0 (2.3.5) 

In the complete energy-momentum tensor 

T ~ = T~ t~ + T~ ~ + T~ ° (2.3.6) 
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the interaction part has to be derived from Lt by variation with regard to all 
'internal' and 'external' variables. But since T~ B in (2.3.2) is independent of 
h~a, the 'internal' variation gives no contribution to T~ 'B. The 'external' 
variation of the part (2.3.3) then leads to the part 

T~ a + T~ a (2.3.7) 

(2.3.3) and (2.3.7) might so to say be considered as the complete 'material' 
parts in the (conjectural) gravitation field h,a. Owing to exchange between 
the three terms in the second member of (2.3.6), the partial conditions 
(2.1.4) and (2.2.5) remain in general not satisfied under the interaction. The 
field equation (2.3.4) is therefore not compatible with the condition 
(2.2.24), that is with the choice (2.2.18). At first sight that might suggest 
Mink that (2.2.18) is a wrong choice. 

If  we turn to the curved point of view, we shall be able to see in an easy 
and clear way, that so far the flat theory of the conjectural gravitation field 
h,o coupled to the 'material' energy-momentum tensor is inconsistent for 
any choice of~, 2,/~, v and that the choice (2.2.23) is just the appropriate one, 
which may help our friend Mink out of his difficulties. 

3. Curved Theory 

3.1. Einstein Theory 

In the Einstein theory the gravitation field is (somewhat implicitly) 
represented in the metric tensor g,B. The latter has to obey the non-linear 
second-order gravitation equation 

G ~ = - ~c T~ z (3.1.1) 

together with suitable boundary conditions. The generator 

G ~ = R ~ - ½ g ~ R  (3.1.2) 

of the gravitation field is a functional with terms either linear in g~B.r~ or 
bilinear in g~B.~ with various (respectively three or four) factors g~a. The 
source T~ a represents again a complete 'external' symmetric 'material' 
energy-momentum tensor of all other particles and fields. But now it has 
to be expressed as a contravariant tensor in the curved Riemann coordi- 
nates. As the covariant divergence of G ~ (3.1.2) equals zero, also T~ ~ has 
to satisfy the condition 

K). __ t¢~ "F'a~, Y '  ~: -Tin ~ ,~+ Tm ~ ;4 ~,~ ~ ~ + T ~ F t  ~ w 0 (3.1.3) 

The 'material' equations of motion and field equations (and the condition 
(3.1.3)) as well as the gravitation equation (3.1.1) may be derived by varia- 
tion from a (non-unique) Lagrangian density ~v/(-g)L with 

L(x)  = Lg(x) + L~(x) (3.1.4) 
The idea is that the interaction between gravitation field and the 'material' 
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systems is entirely accounted for by the metric tensor g~B (and perhaps its 
derivatives) in L,, ,  so that there is no need for an interaction term L~ such as 
in (2.3.1) (where (2.3.3) might be considered as the complete 'material' 
part). In order to yield the field equation (3.1.1), the 'internal' variation with 
regard to g~B has to give (apart from a common factor) 

and 

6 ( ~ / ( - g ) L o )  1 
6g,~x = - ~ "V/(-g) G '~  (3.1.5) 

6 ( V ( - g )  Lm) ½ V ( - g )  "~ 
6g,,;~ = - Tg m e t  (3.1.6) 

L o is a functional ofg, e, g~B,~ and g~,~a only. But L,, also contains 'material' 
tensors. The functional derivative (3.1.6) of the latter is only defined 
(weakly) uniquely if the action integral of ~/(-g)L, is stationary with 
respect to infinitesimal variations of the 'material' particle and field 
variables, that is if the 'material' equations of motion and field equations 
are satisfied. 

If we require the free gravitation Lagrangian L 0 to be an invariant scalar, 
it is given by 

ro  = _ 1 R (3.1.7) 
2~ 

The terms of the expression for the curvature R are either linear in g,a,~a 
or bitinear in g~,~, all with various (respectively two or three) factors 
g'~. One may also choose (Schmutzer, 1968) 

E, = 1 _~ (3.1.8) 
2to 

where/~ is a (non-invariant) part of R, which is homogeneous and bilinear 
in g,a.~ (as indicated by a tilde) and reads 

1~ = -- ¼ g~,~g~a,,{g~ gt~a g '~ -- g~B g~a g ~  _ g ~  ga, g ~  

_ g~,gt~ge,  + 2g~ag,~ga~} (3.1.9) 

For the electrodynamic example the density of the 'material' Lagrangian 
L,, becomes 

_~° ~ 2[m~ g~a .~ .B g~p / "~,/(-g)Lm(x) = - ~_ .f dz~ 3(x  - x / 'U))  x~ x~ + e, .;c~ a t~ 
- - o 0  

+ ¼~/ ( -g )  g,~ g t a d ' a f  ~n (3.1.10) 

where the contravariant tensorf  ~a may still be written in the form (2.1.2). 
(3.1.10) contains no derivatives of g~a. In the particle terms the density 
V'-g has been absorbed in the four-dimensional &function. The density 
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of the metric energy-momentum tensor derived from (3.1.6) becomes 

co 

%/(--g) ZmkXme' : ~ f d'cr~(x- "~: ..~ x,(z~)) m, x .  xr 
-co 

- V ( - g ) g e e f " a f  ~ + ¼,V ' ( -g)g"Xg~,gpJ~af  '~ 0.1.11) 

which is equivalent to the density of the symmetrised canonical energy- 
momentum tensor (2.1.5) written in curved coordinates. A general 
investigation in how far the metric 'material' energy-momentum tensor is 
equivalent I t  the symmetrised canonical one would be desirable. 

3.2. Complete Source Conservation 

The present Section 3.2 may well be passed over until Section 5.3. 
In order to get in the curved Einstein theory a generally conserved energy- 

momentum, one usually adds to the 'external' 'material' symmetric (metric) 
energy-momentum tensor T~ a (3.1.6) some kind of 'internal' gravitation 
energy-momentum complex T~ B (as a functional ofg  ~p, g~p.r and g,o,r~ only), 
so that 

T ~" = r~P + r ~  (3.2.1) 

obeys the conservation condition 

(V'(-g)" T~),~ w 0 (3.2.2) 

in which the weight n of the conserved density still has to be chosen. The 
most natural choice would seem n = 1. Since the condition (3.2.2) is non- 
contravariant, T "~ and therefore also TO a could only be contravariant 
tensors in the trivial case that T ~a would vanish identically. That may be 
achieved by the choice n = 1 together with the metric definition of T~met by 

~(V(-g) r~) ~ 
6 g ~  = - ½V/(-g)  T~ m~t (3.2.3) 

This results with (3.1.5), (3.1.t) (or directly from variation of (3.1.4)) in 
the (weak) cancellation of complete energy-momentum 

TokZ ~_ TkZ - n (3.2.4) m e t ~ m  met ~" 

That removes, together with all difficulties, all physical interest as well. 
The fact that Tg B is not only non-unique (just as T,%a), but (in the non- 

trivial case) even non-contravariant, makes proper localisation of energy- 
momentum by a density-current density entirely delusive. One may at best 
define an overall energy-momentum, for instance integrated (over a space- 
like cross-section of Rl_3) over insular systems. 

If  one could find one or more functionals A "p of g~a, g~¢.v and g~a,~ 
only, which satisfy independent of the field equation (3.1.1) the strong con- 
servation condition of weight n 

(V(-g)" A ~,),~ 7 o (3.2.5) 
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one might split the generator G "a (3.1.2) into two (non-contravarian0 
functionals 

G ~a = A ~° + tcT~ a (3.2.6) 

The contravariant Einstein equation (3.1.1) may then be written in the 
crypto-contravariant form 

A ~x = -to T ~ (3.2.7) 

The complete source term, given by (3.2.1) satisfies the (weak) conservation 
condition (3.2.2). It  seems a matter of  taste as to how far one is willing to 
accept A "B as some kind of  generalised generator with respect to a complete 
'external' plus 'internal" source. In this particular interpretation of  the 
non-linear curved theory it appears as an essential difference from familiar 
linear fiat theories, that the conserved complete source contains an 'internal' 
part T~ ~, which need not vanish in the free field case of a vanishing 'external' 
part. 

It  might perhaps appear more satisfactory if the funcfionals A~a and 
T~ a would be derived from a Lagrangian form. But we shall soon see that 
this is not always possible. 

For  a functional A ~a o fg  ~, g~,~ and g~,~ satisfying the strong condition 
(3.2.5) Wiarda has derived the general form (Wiarda, 1973) 

A ~t~ = .V/(_g)- , (a  q~Br + fl X,~e~ + 7 T~Br).r (3.2.8) 

The superpotentials ~, X and kv are afine tensor densities of weight n, 
antisymmetric in fl,~ and determined by 

ephor = ½ V,(_g),(g~B g~O _ g~r gpO) g,~ go,,., (3.2.9) 

X~ a~ = ½ a / ( - g ) " ( g ~  g TM -- g'~ gt3O) g'~'go~.~ (3.2.10) 

T~ a~ = ½V' ( -g)" (g ' °  g ~ - g'~ g~ )  gO'~ go,,,~ (3.2.11) 

I f A  ~a is required to be symmetric in c~, t ,  the coefficients a, t ,  ~ have to 
satisfy the condition 

2 
- a  = fl = n7 (3.2.12) 

Just as G ~a in (3.2.6), A "~ and hence also T~ B contain terms either linear in 
g,B,ra or bilinear in g~B,~ with various (respectively three and four) factors 

a# ~B g . T~ is homogeneous and bilinear in g,a,r under the condition 

- a  = fl = 7 = 1 (3.2.13) 

If  one wants such a ~ o  also to be symmetric both (3.2.12) and (3.2.13) 
have to be satisfied, in which case n = 2. This is just the Landau choice 
(Wiarda, 1973). 

I t  has been remarked by Wiarda that, in order to obtain a functional 
A~ ° satisfying the corresponding divergence condition 

( V ' ( - g )  n a,,~),z = 0 (3.2.14) 
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one has to lower the index a in (3.2.8) within the brackets in the second 
member. 

In case a T J  (for which (3.2.13) is satisfied) may be derived from a 
Lagrangian Lg by the canonical relation 

k-g) o,, = ~g~a,-~ g ¢'' - - g ~ / ( - g ) L a  (3.2.15) 

it satisfies the relation 
Lo = - ½g'a To, a (3.2.16) 

If the second member does not yield a Lagrangian, ~ J  (and hence also 
A~ a) cannot be canonically derived from another Lagrangian either. 

4. Confrontation 
4.1. Projection 

For an easy comparison between a curved description in R1-3 and a 
fiat one in M1-3, I shall imagine the curved Riemann time-space R1_3 
to be embedded in a flat Minkowski hyper-time-space Mz-s with sufficiently 
large numbers t and s of time- and space-like dimensions. It seems dubious 
whether such an embedding is in general mathematically possible at all. 
But in fact I shall use it only as a somewhat sloppy way of speaking, which in a 
more rigorous mathematical treatment should be replaced by an abstract 
mapping between R~-3 and M~-3 (Treder, 1971). Terms like 'projection' 
and 'tangent' may even be taken over from the embedding picture in the 
abstract mapping. 

In Mt-~ we choose an arbitrary flat M,-3 and also linear orthonormal 
Minkowski coordinates (U,¢"), such that Ml-a is characterized by the 
equation 

4" = 0 (4.1.1) 

for the additional coordinates ~,  whereas ~ represent internal Minkowski 
coordinates in that M~-3. For the sake of simplicity, we may transform the 
x-coordinate system in R~-3 into an a-system, by which I shall mean, 
that the projection of a time-space point x ~ in this system in R1-3 on the 
chosen M1-3 is given by 

~ = x ~ (4.1.2) 

The projection of an a-coordinate net is then an ortholinear Minkowski 
net. The subgroup of curved x-coordinate transformations between a- 
systems is projected on the Poincar6 group of transformations in all Ml_3's 
embedded in Mt_s. The equation of R~-3 in M~_~ may be written 

~a = f .  (fiB) (4.1.3) 
The internal Riemann metric g~a in R~-3 in this a-system then becomes 

Of a Of b 
g~a = ~/~O + t / a b b - ~  (4.1.4) 
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The determinant of  the matrix g,a is g. If  the subdeterminant of  the dement 
g~  is G ~, g~a becomes 

g~B =g-1  6 ,a  (4.1.5) 

with determinant g-1. (4,1.2), (4.1.4) and (4.1.5) are tricky hybrid ex- 
pressions. The indices of  x ~ and g~a are in R~_3 lowered and raised with 
the help of g~a and g~a, those of ~ and t/~a in M1-3 with t/~a and t/~a. 

The problem of embedding of  R1-3 in M~_~ is whether (under certain 
integrability conditions) for a given metric g~a in RI-3 it is possible to find 
for sufficiently large t and s one or more solutionsff(~ B) of (4.1.4). If  not, we 
may as well forget (4.1.3) and (4.1.4) after having written down (4.1.8). 

Now we confront the curved Einstein theory in R I _  3 with Mink's fiat 
theory in M~-3. Let us first suppose that for his free gravitation field he has 
already made the choice (2.2.18). Then there is a striking correspondence 
between cL~ (3,1.8), (3.1.9) and fLg (2.2.1) 

0) 2 
cJ~g~--~ ~aa fL, o (4.1.6) 

for 
g ~  ~--r tl ~'~ g,,a. /,--r 0)tc h~,p, :, (4.1.7) 

That suggests that one writes (4.1.4) and (4.1.5) as 

g~  = t/~ + 0)to h~B (4.1.8) 

g~a = t/~a + 0)to k~a (4.1.9) 

and to consider the second member of(4.1.6) as the lowest order approxima- 
tion of a series expansion in powers of  the small gravitation coupling con- 
stant s:. This is quite a tricky business, since in (4.1.8), (4.1.9) g~a and g~a 
are co- and contravariant components of a tensor in the curved metric, 
t?~ a and t/~a similarly in the flat metric and h~ a and k ~a do not represent com- 
ponents of the same tensor at all. 

I f  we confront ~L,, and eLm + sL,, we get in zero order 

~L~,-~,L~ (4.1.1 O) 

Consistency with (4.1.6) requires 

(O 2 =4o" (4.1.11) 

For the confrontation of the first-order terms we need the (tricky) corre- 
spondence for functional derivatives of  the type 

3 ( ' V / ( - g ) " ~ L ) ~ +  O'rL + n t l ' a  L 1 6 r L  (4.1.12) 

That leads for weight n = 1 with (3.1.6) and (2.3.2) to 

= - ~0) tch~a,T m ~t~-+eL~ = - ztc h~afT~m a (4.1.13) 0)t¢ h~a 6g~B 
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The last correspondence is exact, if we take also in the fiat theory, notably 
in the interaction term (2.3.2) the metric energy-momentum tensor s t y .  
In those cases where ~L~ does not contain derivatives of g~, the latter is 
according to the correspondence (4.1.12) with n = 1 defined by 

a y L  m + ~-q f m - -  ~ ~ $ ~ t m  met 0r/,~ l~z  L -- t 7'~z (4.1.14) 

A consistency condition for the correspondence (4.1.13) would together 
with (4.1.11) be 

09=2z (4.1.15) 

For the gravitation Lagrangian L~ the correspondence (4.1.12) would 
with (3.1.5) and (2.2.2) for (4.1.11) lead to 

1 +-+ 0f~,g 
2to V'(-g) G~ ~ + ½ r l " ~ s L o - - ~ B  ~ (4.1.16) 

From the curved point of view the first two (extra) terms in the second mem- 
ber may already cast some doubt on the validity of the variation (2.2.2). 

In some cosmological models the curvature tensor goes to zero in the 
limit of infinite space-like distances. Then in any a-system g'a tends to q~B 
in this limit and g,o,~ to zero. For such models it might be sensible to 
choose M~_a asymptotic tangential to R1_3 in this limit. In some other models 
the projection of the whole R~_3 on a M~_3 may be restricted to a part of the 
latter. For the moment we need not bother about cosmology. It is sufficient 
to consider a suitably restricted region of R~-a and its projection on a suit- 
ably chosen Ml-a. 

4.2. Local lnertial System 

Let us for a while restrict ourselves even to the infinitesimal surroundings 
of a time-space point Xo in R1-3 and choose M1-3 tangential to R~-3 at this 
point. (Infinitesimal is meant with respect to all separate components 
6x ~ of a displacement in the coordinate system in question.) Then we get 
for the a-system in Rl-a a local inertial a-system, which in this normal 
neighbourhood is a normal coordinate system (Nomizu, 1956) and satisfies 
at Xo the local boundary conditions 

g ~ = r l  ~B g~.~=O(F~B=O);  g ~ , ~ = - r l ~ r l ~ g ~  (4.2.1) 

It represents so to say the time-space surroundings of a freely falling non- 
rotating material system at Xo. In the tangent M~-3 we get at the correspond- 
ing ~o the boundary conditions 

h~ = 0 = k~;  h~,~ = 0 = k~a r; h~a,~ = -~l~ qaxk~,~ (4.2.2) 
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with at the point of  contact the correspondence 

g~,p, rn = egtc h~B,r ~ (4.2.3) 

and in its surroundings 

- g  ~ exp(ogx h,~ r/~9 (4.2.4) 

As long as we shall restrict local correspondence relations to the lowest 
order terms in the infinitesimal surroundings of the point of  contact between 
R~_s and M1-3, the hybrid tensor qualities of  (4.1.8), (4.1.9) will not yet 
become effective and with sufficient care inconsistencies of correspondence 
may be avoided. 

A standard procedure to derive a curved description of'material '  systems 
in the presence of a gravitation field from a flat Minkowski description in the 
absence of  gravitation, is to start with this flat description in the infinitesimal 
surroundings of the point of contact 4o in the local tangent M~-3 at xo. 
Owing to (4.2.2) the 'material' systems then appear locally not subjected to 
gravitation action. The same description still holds in the infinitesimal 
surroundings of  xo in the corresponding local inertial a-system in R:-3 
(as experienced from a freely falling position). Then it may directly be trans- 
lated into a covariant description in an arbitrary curved coordinate system 
in these local surroundings and finally it may be extended (owing to the 
covariance) to the whole curved R1_3. From the curved point of view the 
fiat description of  'material' systems is correct in the whole M~-a in the 
absence of a gravitation field and the curved description is correct in the 
whole Ra-a in the presence of a gravitation field corresponding to the metric 

It is therefore perhaps not too surprising that, whereas a flat theory of  
the free conjectural gravitation tensor field h,~ in the absence of 'matter' 
may also be consistent over the whole M:_3, it appears difficult to wrench 
a theory of  coupled gravitation and 'material' systems into M:-s.  From 
the curved point of view it seems almost obvious to confront the curved 
and fiat theories in the infinitesimal surroundings of  the point of  contact 
xo = ~o in Ra-3 and M~_3, that is under the local boundary conditions (4.2.1), 
(4.2.2) with the correspondence (4.2.3), (4.2.4). 

Under these conditions both d~, o (3.1.8), (3.1.9) and s/~o (2.2.1) locally 
become zero at Xo = ¢o. Their infinitesimal variations correspond as 

2 

3( ~/(-g) cLg)+~, ~ f sLg (4.2.5) 

The generator (3.1.2) tends locally at Xo to 

G ~ = ½g=#, ={t/'¢(t/~a t/#' - tt ~B ~/a') + t/~'(~/*# t/~ - q*¢ t/B~) 

- t/~a(t/~a t/~" - r/~¢r/*9} (4.2.6) 
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The tricky first two (extra) terms in the second member of (4.1.16) tend 
locally to zero. The remaining straightforward correspondence 

G~Z+_+ 2 B~ z (4.2.7) 
¢0 

is consistent with (4.2.6) and (2.2.2) for 

a = 1 (4.2.8) 

(4.2.5) is still consistent with the zero-order correspondence (4.1.10) for 
(4.1.11) and with the first-order correspondence (4.1.13), (4.1.14) for (4.1.15). 
Collecting the consistency conditions (4.1.11), (4.1.15), (4.2.8) we have 

a = z = 1 co = 2 (4.2.9) 

The local limit of  (3.1.3) at Xo becomes for (4.2.1) 

Tm ,a w 0 (4.2.10) 

The 'material' energy-momentum appears locally conserved by itself 
in a local inertial system, because from such a position there appears no 
gravitational action on the local 'matter'. With (4.2.2) the condition (4.2.10) 
will also be locally satisfied in the flat theory. With the flat field equation 
(2.3.4) this is now locally consistent with the condition (2.2.24), that is with 
the choice (2.2.23), on which all our correspondence relations for the gravi- 
tation quantities are based. 

The curved theory is considered to be consistent over all (or at least a 
finite part of) R1_3. The fiat theory appears only locally consistent in M1-3 
in the infinitesimal surroundings of  a point of  contact 4o = Xo with local 
boundary conditions (4.2.2), (4.2.1). Under these conditions the variation 
in (2.2.2) is also acceptable from a curved point of  view and (4.2. I0) becomes 
compatible with (2.2.24). With the local correspondence (4.2.1), (4.2.2) 
and the choice (4.2.9) the flat and curved theories are locally equivalent in 
these surroundings. 

In studying relations between flat and curved theories, we may attain 
better understanding from the local tangential correspondence in a local 
inertial system than from the inconsistent and tricky projection correspon- 
dence (4.1.8), (4.1.9). But for poor Mink this point of view is not readily 
accessible and we still have to see in which ways he might proceed. 

4.3. Energy-Momentum in Loeal Inertial System 

Together with Section 3.2 the present Section 4.3 may well be passed over 
until Section 5.3. 

In a local inertial a-system with (4.2.1) at Xo, where the generator (3.1.2) 
3 
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reads in the local limit as (4.2.6), A ~z (3.2.8) and Tg z in (3.2.6) read in the 
local limit 

A ~  _ 1 ~ ~ ~ ~ , r ~  ~ ~ t/z~) t/~ 

T~ z = ½ g,a,,~{(1 - e) n~'(~/~z t/a~ - n ~a nx$ +(1 + t )  t/~'QI ~a t/" - t/k" ,a~) 

- (1 - y) ~/~a(q~z ~/,, _ ~/~, nz,)} (4.3.2) 

In this representation A ~z and Tff z are already symmetric in ~:, ,l for e = - f l  
(corresponding to the last condition in (2.2.12)). With (3.2.13) ~ffz vanishes 
locally entirely in the local inertial system. But so far this has no special 
significance. In a local inertial system (with vanishing gravitational action) 
the local vanishing of the divergence TffZz and not the vanishing of T~ x 
itseff is essential. 

I f  one transforms from the local inertial system to a general coordinate 
system in R~-3, the transformation of (4.2.6) is unique under the condition 
that it has to be contravariant. The transformation of (4.3.1) and (4.3.2) is 
only unique under the non-contravariant condition that (3.2.5) and 3.2.6) 
must be preserved. In fact (4.2.6) and (4.3.1) can for the choice (3.2.13) not 
even be distinguished in the local inertial system. 

5. Flat Scenarios 

In our advantageous position from which both the curved and flat points 
of view are accessible, we can easily read the correspondence relations in 
both directions. The direction from curved to flat is perhaps easier than the 
opposite one. Poor Mink has merely his inconsitent flat theory and his brains. 
For us it is easy to see what kind of brilliant ideas he might need, in order to 
remove the inconsistencies and to invent ultimately from that flat point 
of view the curved theory. 

Let us imagine three scenarios. None of them will be unknown, at least 
for physicists who cannot honestly forget the Einstein theory. The first 
scenario (metric substitution) is based on the tricky and misleading pro- 
jection correspondence of Section 4.1, and needs some trial and error. 
The second one (free fall base) is based on the local tangential correspondence 
in a local inertial system of Section 4.2. It is straightforward and consistent 
all the time, but it requires more creative inventiveness indeed. The third 
one (perturbation expansion) has been tried by various field theorists. 

5.1. Metric Substitution 

Our correspondence relations between curved and fiat theories might, 
for Mink, sooner or later appear as substitutions, read in the direction from 
flat to curved description. As to the projection correspondence of Section 
4.1. his determinative step should be the substitution (4.1.6) with (4.1.7). 
But from where might he get the inventive idea to substitute the curved 
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metric g~a (4.1.8), (4.1.9) for the flat metric thB ? An obvious suggestion might 
come from the 'material' equations of motion and field equations, which he 
derives from the 'material' part (2.3.3) of the flat Lagrangian L by variation 
with regard to the 'material' variables. If he applies them for instance to 
clocks and measuring rods, he will find almost the same behaviour as we 
would find up to first order in ~: in a curved R~-3 with metric 

g~,a = r/,,a + 2zx h~,t~ (5.1.t) 

In a scrupulous elaboration it might require quite a lot of trial and error to 
adjust proper co- (and contra-)variance after the start from the hybrid 
form (5.1.1), and to extend the series expansion in powers of x, But as soon 
as Mink conjectures the fundamental importance of g,B as a new metric 
in a curved R1-3 and recognises after the substitution (4.1.6) the new c/,o 
(3.1.8), (3.1.9) as the correct free gravitation Lagrangian in this R1_3, 
he may in a more adventurous mood go straight to the point, without bother- 
ing too much about a tricky correspondence with an inconsistent flat 
theory. He might make the substitution of th~ by g,~ directly in the free 
'material' flat Lagrangian ~L~ (2.1.1) and in the meantime forget ~L~ 
(2.3.2) as being only the first-order term in this substitution. 

The suggestion of the substitution of th~ by g,B (5.1.t) does not strictly 
demand a detailed study of the behaviour of clocks and measuring rods or 
other specific 'material' systems. If for 'material' systems for which eL,, 
does not contain derivatives of g~ in the curved description, Mink might 
have discovered the flat metric energy-momentum tensor ~Tg~,t of(4. I. 14), 
he could write (2.3.3) as 

•L/n Lm + Lt = L~, + 2"c~: h~ B ~ + zt¢ h~p t/~ L~ (5.1.2) 

That might suggest to regard the second member as the lowest (zero and 
first) order terms of a series expansion in powers of ~ for the substitution 
of the by g~ (5.1.1) in the Lagrangian density a/(-g)L,,. 

In Section 5.3 we shall look into the question whether a series expansion 
in powers of x of a free gravitation Lagrangian density X/(-g)"Lg of weight 
n might be useful for a flat scenario. 

5.2. Free Fall Base 
The second scenario requires from Mink perhaps an inventivity and 

creative imagination comparable to Einstein's genius. It would pay, 
anyhow, since after some three imaginative daring initial steps, the whole 
approach is straightforward and elegant and it is consistent all the time. Even 
if we have no hope ever to find a Mink, this ambitious scenario might perhaps 
elucidate some relations between flat and curved theory much better than 
could the other two scenarios. 

The second-order field equation (2.3.4) needs supplementary zero and 
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first-order boundary conditions. As a first step we let Mink discover that he 
can make his flat theory of coupled gravitation and 'matter' at least locally 
consistent at an arbitrary (maybe his own) time-space point Go in M1-3 
by imposing the local boundary conditions (4.2.2) and restricting the theory 
for the time being to the infinitesimal surroundings of 40. To be sure, that 
would extinguish all gravitational action on the local 'material' systems. 

It would be a further adventurous and crucial step to conjecture that the 
adequate local reference frame corresponding to this fantastic idea would be 
found in the infinitesimal surroundings of a freely falling (accelerated) and 
non-rotating laboratory. Once having taken office in such unusual surround- 
ings, hc will occupy a supreme bridge-head for further progress. 

For the third step Mink should get the bright idea of transforming from 
the flat M1-3 to a locally tangent curved R1_3. We let him first consider a 
finite region around his local time-space point Go. He may find that locally 
freely falling non-rotating frames at different time-space points ~ (with in 
general a relative acceleration) may be connected by integration of infinitesi- 
mal Poincard transformations. One way to a curved metric might be found 
by the imaginative idea of considering the manifold of flat locally freely 
falling reference systems at the various points ~ as envelope of a curved 
R1-3. The space of tangent M1-3's is then a dual R~_3, which may be mapped 
on the R~_3 of corresponding time-space points of contact x with the help 
of reference tctrads (Treder, 1971; Moller, 1966). If the situation at all 
time-space points ~ should be described equally (for every point from a 
position in one of its own local free fall reference bases), the conjectural 
gravitational field h~a would (almost paradoxically) have to be transformed 
to zero at all these points. That might be achieved by means of integration 
of infinitesimal gauge transformations (2.2.13). The locally consistent 
gravitational field equation (2.3.4) and 'material' equations of motion 
and field equations derived from (2.3.3) should all by a suitable coordinate 
countertransformation from M1-3 to R1-3 be locally preserved at Xo = 40 
and at the same time made consistent in all the other points. As soon as 
Mink has got the idea of transforming from M1-3 to a locally tangent R1-3, 
he needs in the first instance only to perform such a transformation in the 
infinitesimal surroundings of 4o. For this he has to find (perhaps by argu- 
ments similar to those in the first scenario) that the appropriate local in- 
finitesimal transformation is determined by the local boundary conditions 
(4.2.1), (4.2.2) and the local correspondence (4.2.3), (4.2.4). Then he may 
readily derive the local correspondence relation of Section 4.2 read in the 
direction from flat to curved. 

After these three imaginative tentative steps Mink might proceed straight- 
forward in an elegant consistent way, by inventing the standard procedure 
by which in a curved theory a flat description of'material' systems is usually 
adapted to the curved metric in R1-3 by starting from a local inertial system. 
First he might transform in the infinitesimal surroundings of xo (where his 
theory is locally consistent) all expressions and equations from the normal 
a-system into a general coordinate system. Then he will have to extend these 
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expressions and equations from the infinitesimal surroundings of Xo over 
the whole (or at least a finite part of) Rl-a. A necessary and sufficient con- 
dition that this extension shallbe possible and consistent, is that the relevant 
expressions and equations have been transformed into an essentially co- 
(or contra-) variant form. (They may be crypto-covariant, that is equivalent 
to a covariant form.) 

In the case Mink had not already made the choice (2.2.18), he would find 
that this is a necessary and sufficient condition for transforming B ~ 
(2.2.2) into a contravariant form. Just as Einstein, when he had to choose the 
generator (3.1.2) as a contravariant tensor functional of g~ and its first- 
and second-order derivatives, almost had not other choice. Nevertheless 
it might give some satisfaction if the choice (2.2.23) could already be made on 
sound arguments in the (not yet manifestly inconsistent) free flat gravitation 
theory of Section 2.2. 

We may easily read the details of the procedure in the last part of the 
scenario from the local tangential correspondence relations in Section 
4.2. Apart from the choice (2.2.23) Mink will sooner or later have to make 
the choice (4.2.9). Then the extended theory over Rl-a will finally be equiva- 
lent with the Einstein theory indeed. That means that the ultimate criterion 
for acceptability of the theory by observational testing whenever that may 
be feasible, is just the same as for Einstein's theory. 

In discussing a flat approach from a curved point of view, it seems justified 
to ask for the roots of curvature and non-linearityby which gravitation theory 
is distinguished from other familiar field theories. As long as they are not 
coupled together, familiar 'material' systems and the free gravitation 
field h~B (with h~ considered as a proper flat tensor) both can be described 
in M~_3 in a (within certain limits) simple consistent or quasi-consistent 
way. As soon as they are coupled, a simple consistent description (with 
h,~ as a proper tensor) is hardly possible in M1-3, whereas it is possible in an 
elegant and natural way in RI_  3. In the infinitesimal surroundings of a local 
inertial system (freely falling laboratory) with local boundary conditions 
(4.2.2), (4.2.1) and local tangential correspondence (4.2.3), (4.2.4) we can 
readily see how in the second-order field equation (2.3.4) for h~ B or the local 
limit of (3. I. t) for g~ the presence of a 'material' energy-momentum source 
T~ ~ induces a genuine curvature in the metric g,a, which at the same time 
represents the gravitation field. In this way so to speak the present 'matter' 
induces a bending of the M1-3 of the free gravitation field into a curved 
R1-3. But at the same time the gravitation field in R1-3 so to say drags along 
the M~_3 of the 'material' systems, rolling it over the induced curvature of 
R~-a and generating the dual envelope R*_a. Or in a more unified picture 
the description of the 'material' systems may also be transformed from the 
dual R*_3 to the R~-3 of the gravitation field. This wrenching of the 'material' 
systems into the curved R1-3 is in a manner of speaking a feedback effect 
of gravitation on 'matter' from the curvature of the gravitation field induced 
by the 'material' systems themselves. 

The non-linearity of the curved gravitation theory is for instance manifest 
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in the fact that the gravitation Lagrangian (3.1.8) or perhaps (3.1.7) consists 
of terms bilinear in g~B,r and perhaps also terms linear in g,a.ro with various 
(respectively three or two) factors g~a. Or that the curved generator (3.1.2) 
consists of terms linear in g,a,re and other terms bilinear in g~a.~ with a num- 
ber (respectively three or four) of factors g'a. Along the lines of our second 
scenario (as well as in the first one) the predestination to this property may 
in the free flat gravitation theory of Section 2.2 already be read off from the 
corresponding property that the free flat gravitation Lagrangian (2.2.1) 
consists of terms bilinear in h~a,~ with various (in fact three) factors rt "a 
or that the fiat generator (2.2.2) consists of terms linear in h~a.re with a 
number (in fact three) of factors 17 "a. From this special point of view the 
roots of non-linearity spring so to speak equally from all these factors ~/'a. 

5.3. Perturbation Expansion 

It is sometimes suggested that the root of non-tinearity lies in a coupling 
of the gravitation field with its own 'internal' energy-momentum. In as 
far as the Einstein equation (3.1.1) is considered as correct, it accounts 
explicitly only for a coupling with the 'external' 'material' energy-momen- 
tum source T~ B in the second member. Any kind of self-coupling should be 
implied already in the non-linearity of the generator in the first member. The 
alternative crypto-contravariant form (3.2.7) of (3.1.1) suggests in a some- 
what questionable way a coupling with a somewhat dubious conserved 
complete energy-momentum in terms of a somewhat dubious alternative 
generator. 

In the inconsistent flat theory of Section 2.3 there appears no indication 
of any explicit or implicit coupling of the conjectural gravitation field 
h,¢ with its own 'internal' energy-momentum. That has prompted various 
attempts to make the theory consistent and perhaps to produce the non- 
linearity and even the curvature of the Einstein theory by adding to the 
coupling of the field h~¢ with the 'external' energy-momentum source also a 
coupling with the 'internal' one. In various cases this has been attempted in 
terms of some perturbation expansion. The underlying idea is that the 
expansion is in powers of the small gravitation coupling constant ~: and that 
the inconsistent flat field equation (2.3.4) with the generator B ~z (2.2.2) 
is the lowest order approximation to the correct field equation. Usually 
o-, 2,/~, v are at some stage for some or other reason already chosen as in 
(2.2.23). We know already that and why that appears sooner or later as 
the appropriate choice. 

In those cases where the explicit cosmological asymptotic assumption 
is made, that the flat metric ~/~B will in all orders remain the correct metric 
in the limit of infinite space-like distances, it is obvious that whenever a 
curved R1-3 will emanate from the successive approximations, it will be 
asymptotically tangential to the 3//1-3 of the initial flat theory. Without such 
an assumption the relation between the initial M1-3 and a possible final 
R1-3 might be as loose as in the projection correspondence of our first 
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scenario. If it were as tight as in the local tangential correspondence in our 
second scenario, the perturbation expansion would be almost superfluous. 
It might then at best be a poor substitute for the standard procedure of 
contravariant extension in the last part of the free fall scenario. 

The general perturbation procedure is that in every successive step one 
derives from the last-order term of the gravitation Lagrangian a correspond- 
ing order contribution to the 'internal' gravitation energy-momentum. If 
this contribution is coupled (with strength constant z~) to the gravitation 
field h~a, it gives the next order contribution to the stir-interaction part of 
the complete gravitation Lagrangian. A flat third scenario based on this 
idea would be much nearer to our first scenario than to our second one. 
The merits of the perturbation approach would be optimal if the series 
expansion of the gravitation Lagrangian would represent the appropriate 
substitution of the fiat metric r/~ by the curved metric g~a, so that the idea 
of transforming from Ml-a to Ra_3 would be reached in a pedestrian way. 
The most conclusive success of this kind of perturbation approach would be 
gained if it would directly yield a crypto-contravariant field equation (3.2.7), 
which clearly exhibits a coupling to some complete energy-momentum 
source. But the generator A ~ in (3.2.7) may not be derivable from a Lagrang- 
ian and it would be conceivable that already in the course of the procedure 
terms would have been shifted between the two members of the field equation. 
The approach might still be convincing if it were to produce directly 
the contravariant field equation (3.1. I). 

In fact I am not aware of any treatment in which a closed expression is 
derived for the sum of the perturbation series, or even for the general vth 
order term. At best one sometimes argues what the result of the infinite 
sum should be. If one requires that the resulting field equation (as one has 
learned from Einstein) should be contravariant in RI-a, there is hardly any 
uncertainty left and one is (like Einstein was) almost exclusively committed 
to equation (3.1.1) with the generator (3.1.2). (Just as ultimately one is 
almost exclusively committed to the flat choice (2.2.t8).) In a genuine flat 
scenario that argument presupposes in the first place that our Mink would 
already on other grounds have conceived the idea to transform the metric 
tl~a in Mt_a into a metric g~a in R1_3 (and to counter-transform h~a to zero). 
That would already take away a great deal of the merits of the perturbation 
approach, so that Mink would hardly need it any more. In the second place 
the argument presupposes that the purturbation expansion correctly 
accounts for the gravitation self-coupling and that it is consistent and con- 
vergent. I shall try to argue that this presupposition is open to doubt. 
It is not at all unusual that false arguments put us on the track of ultimately 
(within certain boundaries) correct theories, but even that is hardly happen- 
ing here. Rather than that the argument clarifies the relations between flat 
and curved theories, it needs a clarification from such relations. 

I shall not try to analyse existing perturbation expansions. As illustration 
of reasons for doubt and possible pitfalls I shall discuss a simple-minded 
version of a part of the third flat scenario. (Much of the rest has already been 
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discussed in the first one.) Let us in the series expansion in powers of ~c 
write (2.3.1) as 

L =  r ~ '  + ~ L[ °, + ~ ~,(o ~) (5.3.1) 
v=l v=l 

where the upper indices in brackets on Lm in (2.1.1) and in the series expan- 
sions of L~ and J~g denote the power of re. We take the lowest order term 
L~ ~) identical with L~ (2.3.2) and L(o 1) withe o (2.2.1). The role of the expansion 
of the 'material' partLm + L~ has already been considered in the first scenario 
in Section 5.1 and for the moment we shall only be concerned with the 
expansion of Lg. We define B (~)~x and T~)~z analogous to the relations between 
the first and second members of (2,2.2) and (2.2.4). The last members give 
then just the lowest order terms B T M  and iro T M  respectively. The main 
point of the scenario is the conjecture that, analogous to the 'material' 
interaction term (2.3.2), the contribution of the vth order 'internal' energy- 
momentum term 5Po (~)~ to the (v + t)th order self-interaction term L~ "+~) is 

LJo v+l) = - zx h~a T(o v)~a (5.3.2) 

With the relations analogous to (2.2.4) this may be written as 

~ov+ 1) aL(v) h , "ctcTL(o~)rl~'a h~t~ (5.3.3) = - z ~ c - - . . , , .  ~ r/r~ h~a  + 
ah~,a ' 

With the initial term ~1) we obtain for the sum of the series expansion of 
f'a the functional equation 

(l_zxh~an~a)~g+~ x a~g h,~,rl~,h~,a=L(ol ) (5.3.4) 
ah,,z,a " 

which after all we might have written down immediately without the help 
of a series expansion. It might be good luck for Mink if he would not succeed 
in solving this equation (5.3.4), because the result would seem to be wrong 
and liable to lead him astray. 

We known that with the choice (4.2.9) the corresponding cL, o and ~,L o in 
(4.1.6) are transformed into each other by the substitutions (4.1.7). The first 
of these substitutions or its inverse may be represented by the operator 

and the second one or its inverse by 

exp{(2xh~,~,~, - ~ 0 

o r  

exp {(g,#,, - 2xh,a,,) ~ } (5.3.6) 
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respectively. I f  these substitution operators operate on ~L o (3.1.8), (3.1.9) 
or on sJ~g (2.2.1) and if they are expanded in powers of x, only the terms up 
to third order of (5.3.5) and those up to second order of (5.3.6) are effective. 
If  cLg is partially transformed by the first substitution operator of (5.3.6) 
into pLg, the density ~/(--g)npL o of the latter is further transformed by the 
first substitution of (5.3.5) into sLg as 

3 
1 

, ~  1 (~v/(-g) pLo) h n,~ n vB nw = exp(-n ~:h,e,i , ~ ~ ,v,~,l . i . ,  

+ 8x 3 h~ h~ h~,} = sL, (5.3.7) 

Of course this is an awkward way of representing the simple substitution 
(5.3.5). But it may show the shortcomings of the functional equation (5.3.4). 
We have already taken L~) identical with eLo. Let us be willing to read L o 
in(5.3.4) as "V/(-g)npLo with n = 1 (or perhaps n = 0) and condone that (5.3.4) 
does not explicitly account of the substitution (5.3.6). If  we expand the second 
member of (5.3.7) in powers of ~:, the first member of (5.3.4) represents the 
whole zero-order term, only some of the first-order terms and no higher 
order terms at all. Even if we do not worry too much that the density expo- 
nential has been approximated (for weight n = 1 or perhaps even n = 0), 
the neglect of all terms other than r/~q~ar/~ ~ and 2x~/~rhah~ within the 
curly brackets of (5.3.7) appears a rather serious shortcoming indeed. 
We have concluded at the end of Section 5.2 that the roots of non-linearity 
(and consequently of gravitation self-interaction) spring equally from al l  
the three factors in L o (2.2.1) or B ~ (2.2.2). In this simple-minded version 
of the perturbation approach the self-coupling to the 'internal' energy- 
momentum may at best account for one of these three factors. I do not see 
that any other reasonable definition of To (v)~B in terms of~(g ~) could lead to 
the full functional equation (5.3.7). Even if Mink, misled by (4.1.14), might 
get the dubious idea of regarding the expression 

+½. c z . - - ½ s r .  (5.3.8) 

as defining some kind of (from the point of view of (3.2.3) and (4.1.16) 
truncated or improper flat) metric internal' energy-momentum sTff,;~, 
that would with (5.3.2) and co = 2z only lead him to the functional equation 

(1 - z x  h, a n "a) Lo - 2~x hKz - 0L° = £~1~ (5.3.9) 
Oq,~z 
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(The splitting of the second member of (4.1.16) for G ~z in (3.1.5) or for 
Tgmet in (3.2.3) into two parts corresponding to sTg~~zlm in (5.3.8) and B ~a 
(2.2.2) appears somewhat similar to the splitting (3.2.6).) The addition of 
~tcsT~ z in the first member of the field equation (2.3.4) removes the incom- 
patibility with (2.2.24) and (2.2.18).) In (5.3.9) all factors t/~a are now treated 
equally, but not yet completely, since (5.3.9) only represents the terms in 
(5.3.7) of zero and first order in x. (This may readily be understood from the 
point of view of the projection correspondence, since the addition of the 
correction term (5.3.8) in (4.1.16) only contributes a first-order correction 
in the field equation (2.3.4).) I am afraid that also in better versions of  the 
perturbation expansion than the present simple-minded one, the self- 
coupling to the 'internal' energy-momentum may play a part, but not all 
of  the game.-~ It seems that the non-linearity represents a deeper-rooted 
kind of  self-interaction. 

This might also be a warning to be rather careful if one might attempt to 
define and construct classical symmetric (or even quantal causal and anti- 
causal) gravitation propagators by means of a fiat perturbation approach. 

6. Conclusion 

Since Einstein has conceived his gravitation theory in RI_ 3 in his own 
original way, independent of other familiar field theories in (also his own) 
M1-3, it is quite easy to survey from an epigonic curved point of view re- 
lations between fiat theories in M1-3 and curved theories in R1_3. But we 
should perhaps assign to our good flat Mink a genius comparable to that of 
Einstein in order to find the latter's theory independently, from a veritable 
flat approach. All the same, if he never would succeed in presenting us the 
same theory, which Einstein already has given us from another approach, we 
might learn a bit from his difficulties. It is not only valuable that we may 
learn from looking at the same theory from various points of view. It 
sometimes happens that alternative representations are equivalent in the 
established form of a theory, but that some of them do allow for certain 
generalisations or other modifications, whereas some others do not. 

There appears no striking likeness between the curved Einstein gravita- 
tion theory in R1_3 and other familiar fiat 'material' theories in M~_3. 
Nevertheless there is a close local tangential kinship, which one might 
experience in the infinitesimal surroundings as seen from a freely falling 
non-rotating laboratory. But as soon as one tries to extend the theories 
farther over time-space, they appear to behave quite disparately. Without 
gravitational action, the other familiar 'material' theories wotdd have a 

Note added in the proof. This difficulty might seem to be evaded in a procedure by 
Deser (Deser, 1970) in which only one of the three factors ~l ~a appears explicitly. The other 
two are implicitly accounted for in the (upper index of) two factors F~. Deser is an expert 
also in the curved theory, but for Mink it would seem a very difficult task indeed to hit 
from his fiat point of view only on such a refined procedure in an appropriate form. 
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consistent natural extension in flat M~_3. The theory of a gravitation field 
generated by the presence of 'matter' has an elegant consistent natural 
extension in a tangent curved R1-3. By feedback the local tangential 31/1-3 
reference frames for describing the 'material' systems are dragged along so 
to say by the gravitation field in R1_3, rolling over its curved hypersurface 
so as to form the tangential envelope of Rt-3 as a dual R~-a. In amore unified 
representation the 'material' systems become under the gravitational 
(re)action wrenched at measure in the R~_3. Of course all this does not 
exclude equivalent, though less elegant and less transparent representations 
in terms of mappings (for instance by projection) on a 21//1-3. 

Some indications of the inconsistency of a simple extension of the flat 
theory of interacting gravitation and 'matter' beyond the infinitesimal 
surroundings in a local inertial system are for instance the hybrid tensor 
character of h,B and k ~a in the correspondence (4.1.8), (4.1.9) and the trunc- 
ated form (2.2.2) of variation with regard to gravitation quantities instead 
of such a form as (4.1.12). It seems somewhat misleading that a flat free 
gravitation theory in the unphysical case of absence of'matter' as in Section 
2.2 may be extended over the whole M~_3 without inconsistencies, because 
in that case the shortcomings do not yet become manifest. 

It appears that our notions of time and space in common life and imagina- 
tion hardly reach beyond our infinitesimal time-space surroundings and 
that all extension over either M1-3 or RI-a is a matter of more or less special- 
ised reasoning. Within such surroundings there appears a close relation- 
ship between gravitation theory and familiar 'material' theories if they are 
regarded from the unusual point of view of a freely falling non-rotating 
observer. The answer to our opening question, as to how far the Einstein 
theory may be recognised as a perhaps complicated and twisted member of 
the family of the other familiar field theories, seems more or less a matter of 
taste without serious consequences. 

A more interesting question is which tensor and spinor boson and fermion 
theories are 'familiar' or perhaps 'material' in the sense that (in the absence 
of other systems) they fit consistently in flat M1-3 of special relativity (even 
when they interact with each other) and which other ones (like some tensor 
and scalar theories) demand a R~-3 or perhaps some other non-Riemann 
time-space, at least when they interact with, for instance, familiar 'material' 
systems of the former type. 

Owing to the subtlety of the relations between the flat and curved points 
of view, the pro- and contra-qualities of the approach from the one or the 
other side (Thirring, 1961) and the consequences of their mutual relations 
demands a rather scrupulous discussion. For instance the most persuasive 
argument that the flat approach can decide about the attractive or repulsive 
character of gravitation interaction, whereas the curved approach could not, 
deserves a critical examination from either point of view. The root of curv- 
ature in gravitation theory lies in the circumstance that the metric implicitely 
represents the gravitation field and that the latter (and therefore also the 
former) will not be constant in the presence of a 'material' energy-momentum 
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source. The roots of  non-linearity, that is of  self-interaction of  the gravita- 
tion field, lie in all the factors ~/,a of  terms in derivatives of the field h,a 
in the flat gravitation Lagrangian (or in the flat gravitation generator). 
I am afraid that various flat perturbation approaches do not completely 
account for all self-interaction represented by these factors. As soon as all 
the pro- and contra-arguments are no longer a matter of principle, but 
only of a practicaly choice between the one or the other approach in order 
to get the answer on a definite problem in the easiest and clearest way, 
one might feel to have understood the opening question. 

But even then, there remain other aspects where one might feel the desire 
for a clearer understanding. The hybrid splitting for instance of g,B into 
r/, a and e)~:h,a in (4.1.8) is non-unique and in fact highly arbitrary. From the 
curved point of view it leads to the truncation of the curved variation (4.1.12) 
in (4.1.16) into the flat variation in (2.2.2) and to various inconsistencies 
in the flat theory. Whenever ~oxh,a represents a gravitation field coupled to 
(that means generated by and acting on) an energy-momentum or whatever 
other quantity, it would seem more satisfactory if similarly r/, a would repre- 
sent some 'background' field also coupled to that quantity or to some other 
'background' quantity. In other words it might seem more meaningful if a 
deeper and more fundamental significance could be attributed to the unsplit 
g,a coupled in (sometimes non-linear) mathematical expressions to 'ex- 
ternal' 'material' and 'internal' gravitation quantities or forms. But if that 
had some sense, it might perhaps require a very precise and lucid reatisation 
of  the vague cosmological idea that a flat q~a should represent some 'back- 
ground' gravitation field generated by the 'background matter'  in the whole 
universe, such as may be suggested by the as yet obscure and speculative, 
but possibly profound principle of Mach. 
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